Abstract

We investigate the radiation of spin-1 particles by black holes in (1+1) dimensions within the Proca equation. The process is considered as quantum tunneling of bosons through an event horizon. It is shown that the emission temperature for the Schwarzschild background geometry is the same as the Hawking temperature corresponding to scalar particles emission. We also obtain the radiation temperatures for the de Sitter, Rindler and Schwarzschild–de Sitter space–times. In a particular case when two horizons in Schwarzschild–de Sitter space–time coincides, the Nariai temperature is recovered. The thermodynamical entropy of a black hole is calculated for Schwarzschild–de Sitter space–time having two horizons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call