Abstract
When gravitation is combined with quantum theory, the Heisenberg uncertainty principle could be extended to the generalized uncertainty principle accompanying a minimal length. To see how the generalized uncertainty principle works in the context of black hole complementarity, we calculate the required energy to duplicate information for the Schwarzschild black hole. It shows that the duplication of information is not allowed and black hole complementarity is still valid even assuming the generalized uncertainty principle. On the other hand, the generalized uncertainty principle with the minimal length could lead to a modification of the conventional dispersion relation in light of Gravity's Rainbow, where the minimal length is also invariant as well as the speed of light. Revisiting the gedanken experiment, we show that the no-cloning theorem for black hole complementarity can be made valid in the regime of Gravity's Rainbow on a certain combination of parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.