Abstract

We study how the black hole complementarity principle can emerge from quantum gravitational dynamics within a local semiclassical approximation. Further developing and then simplifying a microstate model based on the fragmentation instability of a near-extremal black hole, we find that the key to the replication (but not cloning) of infalling information is the decoupling of various degrees of freedom. The infalling matter decouples from the interior retaining a residual time-dependent quantum state in the hair which encodes the initial state of the matter non-isometrically. The non-linear ringdown of the interior after energy absorption and decoupling also encodes the initial state, and transfers the information to Hawking radiation. During the Hawking evaporation process, the fragmented throats decouple from each other and the hair decouples from the throats. We find that the hair mirrors infalling information after the decoupling time which scales with the logarithm of the entropy (at the time of infall) when the average mass per fragmented throat (a proxy for the temperature) is held fixed. The decoding protocol for the mirrored information does not require knowledge of the interior, and only limited information from the Hawking radiation, as can be argued to be necessitated by the complementarity principle. We discuss the scope of the model to illuminate various aspects of information processing in a black hole.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call