Abstract

We present the first numerical simulations of an initially non-spinning black-hole binary with mass ratio as large as 10:1 in full general relativity. The binary completes approximately 3 orbits prior to merger and radiates about 0.415% of the total energy and 12.48% of the initial angular momentum in the form of gravitational waves. The single black hole resulting from the merger acquires a kick of about 66.7 km/s relative to the original center of mass frame. The resulting gravitational waveforms are used to validate existing formulas for the recoil, final spin and radiated energy over a wider range of the symmetric mass ratio parameter eta=M1*M2/(M1+M2)^2 than previously possible. The contributions of l > 2 multipoles are found to visibly influence the gravitational wave signal obtained at fixed inclination angles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.