Abstract

ABSTRACT The black hole (BH) binaries in active galactic nuclei (AGN) are expected to form mainly through scattering encounters in the ambient gaseous medium. Recent simulations, including our own, have confirmed this formation pathway is highly efficient. We perform 3D smoothed particle hydrodynamics (SPH) simulations of BH scattering encounters in AGN discs. Using a range of impact parameters, we probe the necessary conditions for binary capture and how different orbital trajectories affect the dissipative effects from the gas. We identify a single range of impact parameters, typically of width ∼0.86−1.59 binary Hill radii depending on AGN disc density, that reliably leads to binary formation. The periapsis of the first encounter is the primary variable that determines the outcome of the initial scattering. We find an associated power law between the energy dissipated and the periapsis depth to be ΔE ∝ r−b with b = 0.42 ± 0.16, where deeper encounters dissipate more energy. Excluding accretion physics does not significantly alter these results. We identify the region of parameter space in initial energy versus impact parameter where a scattering leads to binary formation. Based on our findings, we provide a ready-to-use analytic criterion that utilizes these two pre-encounter parameters to determine the outcome of an encounter, with a reliability rate of >90 per cent. As the criterion is based directly on our simulations, it provides a reliable and highly physically motivated criterion for predicting binary scattering outcomes which can be used in population studies of BH binaries and mergers around AGN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call