Abstract

Large area surface microstructuring is commonly employed to suppress light reflection and enhance light absorption in silicon photovoltaic devices, photodetectors, and image sensors. To date, however, there are no simple means to control the surface roughness of III-V semiconductors by chemical processes similar to the metal-assisted chemical etching of black Si. Here, we demonstrate the anisotropic metal-assisted chemical etching of GaAs wafers exploiting the lower etching rate of the monoatomic Ga<111> and <311> planes. By studying the dependence of this process on different crystal orientations, we propose a qualitative reaction mechanism responsible for the self-limiting anisotropic etching and show that the reflectance of the roughened surface of black GaAs reduces up to ∼50 times compared to polished wafers, nearly doubling its absorption. This method provides a new, simple, and scalable way to enhance light absorption and power conversion efficiency of GaAs solar cells and photodetectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.