Abstract
A comprehensive wet chemical procedure was developed by combining acid demineralization, base extraction, and dichromate oxidation for fractionation and quantitative isolation of soil/sediment organic matter (SOM) into four fractions: (1) humic acids + kerogen + BC (HKB); (2) kerogen + BC (KB); (3) humic acid (HA); and (4) BC. The soil/sediment samples tested were collected from the suburban areas of Guangzhou, a rapidly developing city of China. The results show that BC and kerogen constitute 57.8-80.6% of the total organic carbon (TOC) and that the relative content of BC ranges from 18.3% to 41.0% of the TOC, indicating that both BC and kerogen are major organic components in soils and sediments from this industrialized region. Systematic characterization of the isolated SOMs shows that both BC and kerogen have sizes ranging from a few microns to above 100 microm, relatively low O/C and H/C atomic ratios, and low contents of oxygen-containing functional groups. The isolated BC has unique fusinite and semifusinite macerals, highly porous nature, and structures indicative of its possible origins. The study indicates that SOM is highly heterogeneous and that humin, the nonextractable humus fraction, consists mainly of kerogen and BC materials in the tested soil/sediment samples. The presence of these materials in soils and sediments may have significant impacts on pollutant mass transfer and transformation processes such as desorption and bioavailability of less polar organic chemicals in surface aquatic and groundwater environments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.