Abstract
Natural organic matters (NOMs), omnipresent in natural water, challenge the toxicity assessment of pollutants to aquatic organisms due to their complex interactions with chemicals and organisms. Here, we investigated the combined toxicity of one solid NOM (black carbon, BC) or one soluble NOM (humic acid, HA) with antibiotics, roxithromycin (RTM) or gatifloxacin (GAT), to the cyanobacterium Synechocystis sp.. The NOMs alleviated the toxicity of RTM and GAT to Synechocystis sp., and BC had greater alleviation effects than HA due to its stronger adsorption to antibiotics. Antibiotics disturbed the photosynthesis of Synechocystis sp. significantly, which were also mitigated by BC and HA. Proteomic analysis showed that BC up-regulated the pathway of ribosome and photosynthetic antenna protein. GAT down-regulated the pathways of ABC transporter and oxidative phosphorylation. RTM interfered the pathway of porphyrin and chlorophyll metabolism. Furthermore, the addition of BC reduced the number of differentially expressed proteins caused by antibiotics, corroborating its mitigation effects on the toxicity of antibiotics. The disturbance of HA on the pathway of ABC transporters inhibited the internalization of RTM, thus decreasing its toxicity. This study underscores the significance of NOMs in mediating the toxicity of organic pollutants to aquatic organisms in natural waters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.