Abstract

Refractory black carbon (rBC) mass and number concentrations were quantified by a Single Particle Soot Photometer (SP2) in the CalNex 2010 field study on board the Center for Interdisciplinary Remotely‐Piloted Aircraft Studies (CIRPAS) Twin Otter in the Los Angeles (LA) Basin in May, 2010. The mass concentrations of rBC in the LA Basin ranged from 0.002–0.530μg m−3, with an average of 0.172 μg m−3. Lower concentrations were measured in the Basin outflow regions and above the inversion layer. The SP2 afforded a quantification of the mixing state of rBC aerosols through modeling the scattering cross‐section with a core‐and‐shell Mie model to determine coating thickness. The rBC particles above the inversion layer were more thickly coated by a light‐scattering substance than those below, indicating a more aged aerosol in the free troposphere. Near the surface, as the LA plume is advected from west to east with the sea breeze, a coating of scattering material grows on rBC particles, coincident with a clear growth of ammonium nitrate within the LA Basin and the persistence of water‐soluble organic compounds as the plume travels through the outflow regions. Detailed analysis of the rBC mixing state reveals two modes of coated rBC particles; a mode with smaller rBC core diameters (∼90 nm) but thick (>200 nm) coating diameters and a mode with larger rBC cores (∼145 nm) with a thin (<75 nm) coating. The “weekend effect” in the LA Basin results in more thickly coated rBC particles, coinciding with more secondary formation of aerosol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call