Abstract
Reductionism assumes that causation in the physical world occurs at the micro level, excluding the emergence of macro-level causation. We challenge this reductionist assumption by employing a principled, well-defined measure of intrinsic cause-effect power–integrated information (Φ), and showing that, according to this measure, it is possible for a macro level to “beat” the micro level. Simple systems were evaluated for Φ across different spatial and temporal scales by systematically considering all possible black boxes. These are macro elements that consist of one or more micro elements over one or more micro updates. Cause-effect power was evaluated based on the inputs and outputs of the black boxes, ignoring the internal micro elements that support their input-output function. We show how black-box elements can have more common inputs and outputs than the corresponding micro elements, revealing the emergence of high-order mechanisms and joint constraints that are not apparent at the micro level. As a consequence, a macro, black-box system can have higher Φ than its micro constituents by having more mechanisms (higher composition) that are more interconnected (higher integration). We also show that, for a given micro system, one can identify local maxima of Φ across several spatiotemporal scales. The framework is demonstrated on a simple biological system, the Boolean network model of the fission-yeast cell-cycle, for which we identify stable local maxima during the course of its simulated biological function. These local maxima correspond to macro levels of organization at which emergent cause-effect properties of physical systems come into focus, and provide a natural vantage point for scientific inquiries.
Highlights
We challenge the reductionist assumption by studying causal properties of physical systems across different spatiotemporal scales
Using a sequence of examples, our work demonstrates that black boxes are well suited to capture the heterogeneous and specialized nature of components in biological systems
Reductionist approaches in science usually assume that the optimal causal model of a physical system is at the finest possible scale
Summary
Reductionist approaches in science usually assume that the optimal causal model of a physical system is at the finest possible scale. Coarser causal models are seen as convenient approximations due to limitations in measurement accuracy or computational power [1, 2]. The reductionist view is based on the conjecture that the micro level of causal interaction is causally complete, leaving no room for additional causation at a macro level [3]. Arguments in favor of emergence have often been vague, or they have focused on the possibility that macro variables may have greater descriptive power than micro variables, rather than greater causal power [14, 15, 16]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.