Abstract

Abstract The white colour morph of the black bear (Ursus americanus kermodei) occurring on islands on the coast of British Columbia, western Canada, captures more salmon (Oncorhynchus spp.) than does the black morph and is hypothesized to have reduced contrast against the sky from the visual perspective of the salmon. We tested this hypothesis in a natural salmon stream by recording the number and proximity of chum salmon (Oncorhynchus keta) approaches (N = 1617 fish, 91 trials) towards life-size bear models differing in body and leg coloration under a mixed forest-sky canopy. Although salmon approached the white models at a much higher rate than black models, consistent with camouflage, we found greater abrupt evasions to the black models, largely independent of their contrast against the above-surface or below-surface backgrounds. Upward-facing sub-surface video-imaging through the rippled water-air interface indicated major visual fragmentation of the model’s integrity. We suggest that increased evasiveness to black models reflects an evolutionary response due to 3+ million years of trophic interaction between salmon and bears, and that the major differences between calm vs. rippled conditions through the optical cone (Snell’s window) at the water-air interface remains a largely unexplored theme in assessing foraging preferences and adaptive coloration within and among species using the water-air interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.