Abstract
Previous studies have demonstrated cardiac and vascular remodeling induced by microgravity exposure. Yet, as the most important branch of vasculatures circulating the heart, the coronary artery has been seldomly studied about its adaptations under microgravity conditions. Large-conductance Ca2+-activated potassium channel (BKCa) and the Ras homolog family member A (RhoA)/Rho kinase (ROCK) pathway play key roles in control of vascular tone and mediation of microgravity-induced vascular adjustments. Therefore, we investigated the adaptation of coronary vasoreactivity to simulated microgravity and the role of BKCa and the RhoA/ROCK pathway in it. Four-week-old hind-limb unweighted (HU) rats were adopted to simulate effects of microgravity. Right coronary artery (RCA) constriction was measured by isometric force recording. The activity and expression of BKCa and the RhoA/ROCK pathway were examined by Western blot, patch-clamp recordings, and immunoprecipitation. We found HU significantly decreased RCA vasoconstriction to KCl, serotonin, and U-46619, but increased protein expression and current densities of BKCa, inhibition of which by iberiotoxin (IBTX) further decreased RCA vasoconstriction (P < 0.05). Expression of RhoA and ROCK as well as active RhoA and phosphorylation of myosin light chain (MLC) at Ser19 and MLC phosphatase target-1 at Thr696 were significantly increased by HU, and ROCK inhibitor Y-27632 exerted greater suppressing effect on HU RCA vasoconstriction than that of control (P < 0.05). BKCa opener NS1619 increased HU RCA vasoconstriction, which was blocked by both RhoA and ROCK inhibitor, similar to the effect of IBTX. These results indicate that HU impairs coronary vasoconstriction but enhances BKCa activity acting as a protective mechanism avoiding excessive decrease of coronary vasoreactivity through activation of the RhoA/ROCK pathway.-Wu, Y., Yue, Z., Wang, Q., Lv, Q., Liu, H., Bai, Y., Li, S., Xie, M., Bao, J., Ma, J., Zhu, X., Wang, Z. BKCa compensates impaired coronary vasoreactivity through RhoA/ROCK pathway in hind-limb unweighted rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.