Abstract

Previously, we showed that development of myocardial necrotic lesions is associated with impaired endothelium-dependent coronary artery relaxation in young cardiomyopathic hamsters. Since active necrosis declines with aging, this study was designed to determine whether coronary artery endothelium-dependent relaxation to ACh is restored and to identify the mechanisms mediating this effect. Intraluminal diameter was recorded in coronary arteries (150-250 micrometer) from control (C, 297 +/- 5 days old) and cardiomyopathic (M, 296 +/- 4 days old) hamsters. Relaxation to ACh (10(-9)-3 x 10(-5) M) was similar in vessels from C and M hamsters. However, mechanisms mediating relaxation to ACh were altered. Inhibition of nitric oxide synthase (NOS) activity with N-nitro-L-arginine (1 mM) had a greater inhibitory effect in vessels from C hamsters, indicating a reduction in NOS-dependent relaxation in vessels from M hamsters. Conversely, inhibition of large Ca(2+)-dependent K(+) (BK(Ca)) channels with charybdotoxin (CTX, 0.1 microM) had a greater inhibitory effect in vessels from M hamsters. In the presence of both N-nitro-L-arginine and CTX, relaxation to ACh was abolished in both groups. CTX (0.1 micrometer) produced a 50 +/- 4 and 30 +/- 3% contraction of vessels from M and C hamsters, respectively, indicating an enhanced role for BK(Ca) channels in regulation of coronary artery tone in M hamsters. Finally, vasodilatory cyclooxygenase products contributed to ACh-induced relaxation in vessels from M, but not C, hamsters. In conclusion, NOS-dependent relaxation of coronary small arteries is reduced in the late stage of cardiomyopathy. An increase in relaxation mediated by BK(Ca) channels and vasodilatory cyclooxygenase products compensates for this effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.