Abstract
Multiwavelength observations are now the norm for studying blazars’ various states of activity, classifying them, and determining the possible underlying physical processes driving their emission. Broadband emission models became unavoidable tools for testing emission scenarios and setting the values of physical quantities such as the magnetic field strength, Doppler factor, or shape of the particle distribution of the emission zone(s). We announce here the first public release of a new tool, Bjet_MCMC, that can automatically fit the broadband spectral energy distributions (SEDs) of blazars. The complete code is available on GitHub and allows for testing leptonic synchrotron self-Compton models with or without external inverse-Compton processes from the thermal environment of supermassive black holes (accretion disk and broad-line region). The code is designed to be user-friendly and computationally efficient. It contains a core written in C++ and a fully parallelized SED fitting method. The original multi-SSC zone model of Bjet is also available on GitHub but is not included in the Markov Chain Monte Carlo fitting process at the moment. We present the features, performance, and results of Bjet_MCMC, as well as user advice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.