Abstract

5-Fluorouracil (5-FU), a pyrimidine analog, is a chemotherapy agent used in the treatment of a wide variety of cancers (breast, colorectal, gastrointestinal, etc.). However, its short plasma half-life, low selectivity against cancer cells and serious side effects limited its clinical use. In this study, it was aimed to minimize the negative properties of 5-FU with controlled release technology. For this purpose, 5-FU loaded poly(vinyl alcohol)/sodium alginate (PVA/NaAlg) beads were prepared by ionic crosslinking method using FeCl3 and beads were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). In vitro release studies were carried out for 2 hours at 3 different pH values (1.2, 6.8 and 7.4) for a total of 6 hours. The effects of PVA/NaAlg (w/w) ratio, drug/polymer (w/w) ratio, crosslinking time and crosslinker concentration on 5-FU release were investigated. It was determined that 5-FU release increased with increasing PVA amount in the beads, whereas 5-FU release decreased with increasing crosslinking time and crosslinker concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call