Abstract
The class of biwarped product manifolds is a generalized class of product manifolds and a special case of multiply warped product manifolds. In this paper, biwarped product submanifolds of the type [Formula: see text] embedded in the complex space forms are studied. Some characterizing inequalities for the existence of such type of submanifolds are derived. Moreover, we also estimate the squared norm of the second fundamental form in terms of the warping function and the slant function. This inequality generalizes the result obtained by Chen in [B. Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds I, Monatsh. Math. 133 (2001) 177–195]. By the application of derived inequality, we compute the Dirichlet energies of the warping functions involved. A nontrivial example of these warped product submanifolds is provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geometric Methods in Modern Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.