Abstract

The recognition of RV overpressure is critical to human life, as this may signify morbidity and mortality. Right ventricle (RV) dysfunction is understood to have an impact on the performance of the left ventricle (LV), but the mechanisms remain poorly understood. It is understood that ventricular compliance has the ability to affect cardiac performance. In this study, a bi-ventricular model of the rat heart was used in preference to other, single-ventricle models. Finite element analysis (FEA) of the bi-ventricular model provides important information on the function of the healthy heart. The passive myocardium was modelled as a nearly incompressible, hyperelastic, transversely isotropic material using finite element (FE) methods. Bi-ventricular geometries of healthy rat hearts reconstructed from magnetic resonance images were imported in Abaqus©. In simulating the normal passive filling of the rat heart, pressures of 4.8kPa and 0.0098kPa were applied to the inner walls of the LV and RV respectively. In addition, to simulate the overpressure of the RV, pressures of 2.4kPa and 4.8kPa were applied to the endocardial walls of the LV and RV respectively. As boundary conditions, the circumferential and longitudinal displacements at the base were set to zero. The radial displacements at the base were left free. The results show that the average circumferential stress at the mid-wall in the overloaded model increased from 2.8kPa to 18.2kPa. The average longitudinal stress increased from 1.5kPa to 9.7kPa. Additionally, in the radial direction, the average stress increased from 0.1kPa to 0.6kPa in the mid-wall. The average circumferential strain was found to be 0.138 and 0.100 on the endocardium of the over pressured and healthy model respectively. The average circumferential stress at the epicardium, mid-wall and endocardium in the case of a normal heart is 10 times lower than in the overloaded heart model. The finite analysis method is able to provide insights into the behaviour of the over pressured model (myocardium). In the overloaded model the high stresses and strains were observed on the septal wall. The bi-ventricular model was shown to provide useful information relating to the over pressured ventricle. The possible heart dysfunction may be attributable to high stress and strain in the over pressured heart.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call