Abstract

As known, the problem of choosing “good” nodes is a central one in polynomial interpolation. While the problem is essentially solved in one dimension (all good nodal sequences are asymptotically equidistributed with respect to the arc-cosine metric), in several variables it still represents a substantially open question. In this work we consider new nodal sets for bivariate polynomial interpolation on the square. First, we consider fast Leja points for tensor-product interpolation. On the other hand, for interpolation in P n 2 on the square we experiment four families of points which are (asymptotically) equidistributed with respect to the Dubiner metric, which extends to higher dimension the arc-cosine metric. One of them, nicknamed Padua points, gives numerically a Lebesgue constant growing like log square of the degree.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.