Abstract
In this study, a new nonparametric approach using Bernstein copula approximation is proposed to estimate Pickands dependence function. New data points obtained with Bernstein copula approximation serve to estimate the unknown Pickands dependence function. Kernel regression method is then used to derive an intrinsic estimator satisfying the convexity. Some extreme-value copula models are used to measure the performance of the estimator by a comprehensive simulation study. Also, a real-data example is illustrated. The proposed Pickands estimator provides a flexible way to have a better fit and has a better performance than the conventional estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.