Abstract

The so-called “Padua points” give a simple, geometric and explicit construction of bivariate polynomial interpolation in the square. Moreover, the associated Lebesgue constant has minimal order of growth O ( log 2 ( n ) ) . Here we show four families of Padua points for interpolation at any even or odd degree n , and we present a stable and efficient implementation of the corresponding Lagrange interpolation formula, based on the representation in a suitable orthogonal basis. We also discuss extension of (non-polynomial) Padua-like interpolation to other domains, such as triangles and ellipses; we give complexity and error estimates, and several numerical tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.