Abstract

A memristor that can emulate biological synapses is a promising basic-processing unit in neural-network computation. Here we propose a new-conceptual memristor based on a memoristive interface composed of two types of non-memristive materials, successfully realizing continuously tunable resistance controlled by both voltage (current) and applied time of a single pulse with a swift response comparable with synapses. The brain-like memorizing capability of the memristor is demonstrated. The memoristive mechanism in the interface is thought to be dominated by a Schottky barrier tuned by the capture/release of the carriers in interface traps with dispersive energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.