Abstract

It is well-known that the basic properties of a bivariate spline space such as dimension and approximation order depend on the geometric structure of the partition. The dependence of geometric structure results in the fact that the dimension of a C1 cubic spline space over an arbitrary triangulation becomes a well-known open problem. In this paper, by employing a new group of smoothness conditions and conformality conditions, we determine the dimension of bivariate C1 cubic spline spaces over a so-called even stratified triangulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.