Abstract
In this paper, we discuss the bivariate Birnbaum-Saunders accelerated lifetime model, in which we have modeled the dependence structure of bivariate survival data through the use of frailty models. Specifically, we propose the bivariate model Birnbaum-Saunders with the following frailty distributions: gamma, positive stable and logarithmic series. We present a study of inference and diagnostic analysis for the proposed model, more concisely, are proposed a diagnostic analysis based in local influence and residual analysis to assess the fit model, as well as, to detect influential observations. In this regard, we derived the normal curvatures of local influence under different perturbation schemes and we performed some simulation studies for assessing the potential of residuals to detect misspecification in the systematic component, the presence in the stochastic component of the model and to detect outliers. Finally, we apply the methodology studied to real data set from recurrence in times of infections of 38 kidney patients using a portable dialysis machine, we analyzed these data considering independence within the pairs and using the bivariate Birnbaum-Saunders accelerated lifetime model, so that we could make a comparison and verify the importance of modeling dependence within the times of infection associated with the same patient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.