Abstract

Weighted distributions (univariate and bivariate) have received widespread attention over the last two decades because of their flexibility for analyzing skewed data. In this paper, we derive the bivariate and multivariate weighted Kumaraswamy distributions via the construction method as discussed in B.C. Arnold, I. Ghosh, A. Alzaatreh, Commun. Stat. Theory Methods. 46 (2017), 8897–8912. Several structural properties of the bivariate weighted distributions including marginals, distributions of the minimum and maximum, reliability parameter, and total positivity of order two are discussed. We provide some multivariate extensions of the proposed bivariate weighted Kumaraswamy model. Two real-life data sets are used to show the applicability of the bivariate weighted Kumaraswamy distributions and is compared with other rival bivariate Kumaraswamy models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.