Abstract

Program-in chip-out (PICO) is a system for automatically synthesizing embedded hardware accelerators from loop nests specified in the C programming language. A key issue confronted when designing such accelerators is the optimization of hardware by exploiting information that is known about the varying number of bits required to represent and process operands. In this paper, we describe the handling and exploitation of integer bitwidth in PICO. A bitwidth analysis procedure is used to determine bitwidth requirements for all integer variables and operations in a C application. Given known bitwidths for all variables, complex problems arise when determining a program schedule that specifies on which function unit (FU) and at what time each operation executes. If operations are assigned to FUs with no knowledge of bitwidth, bitwidth-related cost benefit is lost when each unit is built to accommodate the widest operation assigned. By carefully placing operations of similar width on the same unit, hardware costs are decreased. This problem is addressed using a preliminary clustering of operations that is based jointly on width and implementation cost. These clusters are then honored during resource allocation and operation scheduling to create an efficient width-conscious design. Experimental results show that exploiting integer bitwidth substantially reduces the gate count of PICO-synthesized hardware accelerators across a range of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.