Abstract

The class of affine Boolean functions is rich enough to express constant bits and dependencies between different bits of different words. For example, the function (x0) ∧ (¬y1) ∧ (x4 ⇔ y7) ∧ (x5 ⇔ ¬y9) is affine and expresses the invariant that the low bit (bit 0) of the variable x is true, that bit 1 of y is false, that the bits 4 and 7 of x and y coincide whereas bits 5 and 9 of x and y differ. This class of Boolean function is amenable to bit-precise reasoning since it satisfies strong chain properties which bound the number of times a system of semantic fixpoint equations need to be reapplied when reasoning about loops. This paper address the key problem of abstracting an arbitrary Boolean function to either a general affine function or a so-called affine function of width 2, when the function is represented as an ROBDD. Novel algorithms are presented for this task: one that manipulates Boolean vectors and another which is inspired by anti-unification. The speed and precision of both algorithms are compared on benchmark circuits, to draw conclusions on the tractability of affine abstraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.