Abstract

Using bit-parallelism has resulted in fast and practical algorithms for approximate string matching under Levenshtein edit distance, which permits a single edit operation to insert, delete or substitute a character. Depending on the parameters of the search, currently the fastest non-filtering algorithms in practice are the O ( k ⌈ m / w ⌉ n ) algorithm of Wu and Manber, the O ( ⌈ ( k + 2 ) ( m − k ) / w ⌉ n ) algorithm of Baeza-Yates and Navarro, and the O ( ⌈ m / w ⌉ n ) algorithm of Myers, where m is the pattern length, n is the text length, k is the error threshold and w is the computer word size. In this paper we discuss a uniform way of modifying each of these algorithms to permit also a fourth type of edit operation: transposing two adjacent characters in the pattern. This type of edit distance is also known as Damerau edit distance. In the end we also present an experimental comparison of the resulting algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.