Abstract
We introduce a group algebra formulation for bit-optimal decoding of binary block codes. We use this new framework to give a simple algebraic proof that Pearl's and Gallager's belief propagation decoding algorithms are bit-optimal when the Tanner graph of the code is a tree. We believe that these derivations of known results give new insights into the issues of decoding on graphs from the algebraic coding theorist's point of view.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.