Abstract

India’s unique and highly diverse biota combined with its unique geodynamical history has generated significant interest in the patterns and processes that have shaped the current distribution of India’s flora and fauna and their biogeographical relationships. Fifty four million year old Cambay amber from northwestern India provides the opportunity to address questions relating to endemism and biogeographic history by studying fossil insects. Within the present study seven extant and three fossil genera of biting midges are recorded from Cambay amber and five new species are described: Eohelea indica Stebner & Szadziewski n. sp., Gedanohelea gerdesorum Stebner & Szadziewski n. sp., Meunierohelea cambayana Stebner & Szadziewski n. sp., Meunierohelea borkenti Stebner & Szadziewski n. sp., and Meunierohelea orientalis Stebner & Szadziewski n. sp. Fossils of species in the genera Leptoconops Skuse, 1889, Forcipomyia Meigen, 1818, Brachypogon Kieffer, 1899, Stilobezzia Kieffer, 1911, Serromyia Meigen, 1818, and Mantohelea Szadziewski, 1988 are recorded without formal description. Furthermore, one fossil belonging to the genus Camptopterohelea Wirth & Hubert, 1960 is included in the present study. Our study reveals faunal links among Ceratopogonidae from Cambay amber and contemporaneous amber from Fushun, China, Eocene Baltic amber from Europe, as well as the modern Australasian and the Oriental regions. These findings imply that faunal exchange between Europe, Asia and India took place before the formation of Cambay amber in the early Eocene.

Highlights

  • Modern India is characterized by a diverse biota with many endemic elements especially in the area of the Western Ghats, one of only two terrestrial biodiversity “hotspots” in South Asia [1]

  • One fossil belonging to the genus Camptopterohelea Wirth & Hubert has been described in an earlier work [42]

  • The specific name refers to the Oriental Region

Read more

Summary

Introduction

Modern India is characterized by a diverse biota with many endemic elements especially in the area of the Western Ghats, one of only two terrestrial biodiversity “hotspots” in South Asia [1]. In contrast to the “Biotic ferry” theory, models have been developed in which broad land bridge connections between drifting India and Africa or island arcs between India and Asia or India and Africa existed, allowing faunal exchange [3, 4, 5]. The plausibility of these different models strongly depends on geodynamic reconstructions and the precise timing of the India-Asia collision. Age estimates of the initial contact between India and the remainder of Asia range from 70–65 Ma to as recently as 25–20 Ma (e.g. [4, 6, 7, 8, 9, 10, 11])

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call