Abstract

Cardiac specification models are widely utilized to provide insight into the expression and function of homologous genes and structures in humans. In Drosophila, contractions of the alary muscles control hemolymph inflow and support the cardiac tube, however embryonic development of these muscles remain largely understudied. We found that alary muscles in Drosophila embryos appear as segmental pairs, attaching dorsally at the seven-up ( svp) expressing pericardial cells along the cardiac dorsal vessel, and laterally to the body wall. Normal patterning of alary muscles along the dorsal vessel was found to be a function of the Bithorax Complex genes abdominal-A ( abd-A) and Ultrabithorax ( Ubx) but not of the orphan nuclear receptor gene svp. Ectopic expression of either abd-A or Ubx resulted in an increase in the number of alary muscle pairs from seven to 10, and also produced a general elongation of the dorsal vessel. A single knockout of Ubx resulted in a reduced number of alary muscles. Double knockouts of both Ubx and abd-A prevented alary muscles from developing normally and from attaching to the dorsal vessel. These studies demonstrate an additional facet of muscle development that depends upon the Hox genes, and define for the first time mechanisms that impact development of this important subset of muscles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call