Abstract
Deep Neural Networks (DNNs) have various performance requirements and power constraints depending on applications. To maximize the energy-efficiency of hardware accelerators for different applications, the accelerators need to support various bit-width configurations. When designing bit-reconfigurable accelerators, each PE must have variable shift-addition logic, which takes a large amount of area and power. This paper introduces an area and energy efficient precision-scalable neural network accelerator (BitBlade), which reduces the control overhead for variable shift-addition using bitwise summation method. The proposed BitBlade, when synthesized in a 28nm CMOS technology, showed reduction in area by 41% and in energy by 36-46% compared to the state-of-the-art precision-scalable architecture [14].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.