Abstract

ABSTRACT Bit1, as an integrin-specific effector, is specifically expressed in lens epithelial cells (LECs) and may be essential to maintain the normal function of LECs. The present study investigated the function of Bit1 and its regulatory mechanism in LECs. Knockdown of Bit1 was mediated by a lentivirus with a specific short-hairpin RNA against Bit1 in SRA01/04 cells. Cell proliferation ability was measured by CCK-8 assay. Cell migration was examined by transwell and wound-healing assays. The effect of Bit1 knockdown on genome-wide expression patterns was studied via a GeneChip® PrimeView™ Human Gene Expression Array. Based on the ingenuity pathway analysis (IPA), Bit1ʹs regulation of target pathways and genes was verified by real-time qPCR and Western blotting. Bit1 knockdown inhibited proliferation, migration, and regulated cell cycle and apoptosis of LECs. Microarray gene expression analysis and IPA assays revealed that integrin and TGFβ signaling pathways were remarkably impacted by Bit1 expression. FAK, PAK2, ITGA5, and ITGB1 were identified as core node molecules under the control of Bit1. Bit1 participates in integrin and TGFβ signaling via regulating downstream FAK and PAK2 and subsequently affecting EMT-related gene expression including ITGA5, ITGB1, and αSMA. In conclusion, Bit1 plays as an important role in the regulation between integrin and TGFβ signaling, which affects cell survival, migration, and EMT of LECs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call