Abstract

A simple but powerful architecture based on the classical associative processor model is proposed. By distributing logic among slices of storage cells such that a number of bit-planes share a simple logic unit, bit-parallel arithmetic for massively parallel processing becomes feasible. For m-bit operands, this architecture enables complex operations such as multiplication and division to execute in O(m) cycles as opposed to O(m/sup 2/) for bit-serial machines. Algorithms which utilize this bit-parallel property to efficiently perform operations on floating point data have been developed. The simplicity of the architecture enables its implementation using VLSI technology, and hence allows the construction of a word-parallel, bit-parallel, massively parallel (P/sup 3/) computing system. Implementations of the fast Fourier transform and matrix multiplication are presented to illustrate the operation of this system.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.