Abstract

We have suggested bit-interleaved coded modulation with soft decision iterative decoding (BICM-ID) for bandwidth-efficient transmission over Gaussian and fading channels. Unlike trellis coded modulation, BICM-ID has a small free Euclidean distance but large diversity order due to bit interleaving. With iterative decoding, soft bit decisions can be employed to significantly improve the conditional intersignal Euclidean distance. This leads to a large coding gain, comparable to that of turbo TCM, over both Gaussian and Rayleigh fading channels with much less system complexity. We address critical design issues to enhance the decoding performance and provide the analytical bounds on the performance with an ideal feedback assumption. We investigate the performance characteristics of BICM-ID through extensive simulations and show that at high signal to noise ratios, the performance of BICM-ID converges to the performance assuming error-free feedback.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call