Abstract

Multilevel cell (MLC) states with lower threshold voltage endure less cell damage, lower retention error, and less current consumption. Based on these characteristics, it is opportunistic to strengthen MLC flash by introducing bit-flipping that reshapes state proportions on MLC pages. In this paper, we present a holistic study of bit-flipping schemes upon MLC flash in theory and practice. Specifically, we systematically investigate effective bit-flipping schemes and propose four new schemes on manipulating MLC states. We further design a generic implementation framework, named MLC bit-flipping framework, to implement bit-flipping schemes within solid state drives controllers, nicely integrating with existing system-level optimizations to further improve overall performance. The experimental results demonstrate that our proposed bit-flipping schemes standalone can reduce up to 28% cell damages and 53% retention errors. Our circuit-level simulation manifests that the bit-flipping latency on a page is less than 4 $\mu \text{s}$ when using 8K logic gates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.