Abstract
Formulation of the on-axis scintillation index of a focused Gaussian beam in weak oceanic turbulence is derived by using the Rytov method, and using this formulation, the average bit error rate (BER) is evaluated. The scintillation indices of collimated, focused Gaussian, plane, and spherical beams are compared. The scintillation index and BER versus the average signal-to-noise ratio is found by using the log-normal distributed intensity for the collimated and focused Gaussian beams, which are exhibited for various source sizes α(s), focal lengths F(s), rates of dissipation of the mean squared temperature χ(T), and rates of dissipation of the turbulent kinetic energy per unit mass of fluid ε. Focused beams are found to have important advantages over collimated beams. For the focused beam, as the source size increases, the scintillation index and BER decrease. When the focal length is equal to the propagation length, the BER is found to possess the smallest value. The BER is proportional to χ(T), but inversely proportional to ε.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.