Abstract

A high-efficiency differential-chaos-shift-keying (HE-DCSK) system has been proposed previously for the improvement of both bit-rate and bit-error-rate (BER) performance in comparison with the conventional DCSK system. This improvement made HE-DCSK be a promising solution for chaos-based communications. However, the performance of this system was just investigated under an additive white Gaussian noise (AWGN) channel. This is main motivation for our work to evaluate the performance of HE-DCSK over a typical wireless channel which is simultaneously affected by white noise, fading, multipath, and delay spread. The operation of the transmitter and receiver over the wireless channel is modeled and described. The BER performance is evaluated by theoretical analysis using Gaussian approximation and discrete integration. The numerical results obtained by Monte Carlo simulations are presented to verify the analyzed performance. Obtained results point out that the HE-DCSK system not only performs better than other DCSK-based ones under wireless channels but also can exploit the multipath characteristic to improve the performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.