Abstract

IEEE 802.11b WLAN (Wi-Fi) and IEEE 802.15.1 WPAN (bluetooth) are prevalent nowadays, and radio frequency identification (RFID) is an emerging technology which has wider applications. 802.11b occupies unlicensed industrial, scientific and medical (ISM) band (2.4–2.483 5 GHz) and uses direct sequence spread spectrum (DSSS) to alleviate the narrow band interference and fading. Bluetooth is also one user of ISM band and adopts frequency hopping spread spectrum (FHSS) to avoid the mutual interference. RFID can operate on multiple frequency bands, such as 135 KHz, 13.56 MHz and 2.45 GHz. When 2.45 GHz RFID device, which uses FHSS, collocates with 802.11b or bluetooth, the mutual interference is inevitable. Although DSSS and FHSS are applied to mitigate the interference, their performance degradation may be very significant. Therefore, in this article, the impact of 2.45 GHz RFID on 802.11b and bluetooth is investigated. Bit error rate (BER) of 802.11b and bluetooth are analyzed by establishing a mathematical model, and the simulation results are compared with the theoretical analysis to justify this mathematical model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.