Abstract

Hetero-structural solid solutions, i.e. those from the parent compounds with different crystal structures, occasionally appear for exploring new materials, but a systematic understanding of the thermodynamics, microstructures and electronic characteristics is still lacking. By alloying cubic (1-x)Mg2Sn with hexagonal (0.5x)Mg3Sb2, we show that such a system manifests an overall pseudocontinuous composition distribution with hierarchical microstructures, and the coexistence of n-type/p-type electronic conduction regions. This type of solid solution is defined as a bistructural pseudocontinuous solid solution (BiSS), clearly different from the homogenous iso-structural solid solutions. The Mg2-0.5xSn1-xSbx phase is found to be stable at the Mg2Sn-based phase only in the range of 0 < x ≤ ∼0.47, consistent with experimental observations. Large-scale Monte Carlo simulations reveal the natural occurrence of hierarchical microstructures, which contains primarily both nanoscale Mg-deficiency clusters and a homogeneous matrix showing tunable compositions relevant to alloy composition and annealing temperature. The electronic structures of the BiSS thus manifest a spatially inhomogeneous coexistence of n-type matrix and p-type nanoclusters, implying the importance of selective doping for optimizing thermoelectric performance. Those phenomena could be considered universal in hetero-structural solid solutions. This work offers a general guideline for the design of bistructural and even hetero-structural solid solutions with potential novel functionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call