Abstract

The bis(trifluoromethyl)phosphinous acid, (CF3)2P-O-H, is the only known example of a thermally stable phosphinous acid. Although this compound has been known since 1960, little is known about the chemistry of this extraordinary compound; this might be due to the tedious, and in some part risky, synthesis that was originally published. An improved, simple, and safe synthesis that is based on the treatment of the easily accessible (CF3)2PNEt2, with at least three equivalents of p-toluene sulfonic acid, is presented. The reaction results in a complete conversion to the phosphinous acid, which is isolated in almost 90 % yield. The compound exists in an equilibrium of two P--OH rotational isomers, a fact which is supported by quantum chemical calculations. The relative enthalpy difference of 6.4 kJ mol(-1), calculated at the B3PW91/6-311G(3d,p) level, is in excellent agreement with the experimental value of 5.9 kJ mol(-1), which was determined from the temperature dependence of the nu(OH) bands of the two rotational isomers. The complete experimental vibrational spectra of both rotamers, their predicted vibrational spectra obtained by using quantum chemical calculations, and an attempt at photoinduced isomerization of matrix-isolated (CF3)2POH is presented. The experimental structure, obtained from an electron-diffraction study in the gas phase, is reproduced very well by ab initio and density functional theory (DFT) methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call