Abstract

Divalent zinc triad metal ion complexes of type M( L) 2(ClO 4) 2 ( L = N-(2-pyridylmethyl)- N-(2-(methylthio)ethyl)amine) with N 4S 2 metal coordination spheres were isolated and characterized by X-ray crystallography and variable temperature proton NMR. Although bis-tridentate chelates have nine geometric isomers, the crystallographically characterized complexes of all three metal ions had trans facial octahedral coordination geometry with C i symmetry. Despite the low coordination number and geometric preferences of d 10 metal ions, which facilitate inter- and intramolecular exchange processes, dilute solutions of these bis-tridentate chelates exhibited slow geometric isomerization. Symmetry, sterics and shielding arguments supported specific isomeric assignments for the major and minor chemical shift environments observed at low temperature. At elevated temperature, rapid intramolecular exchange occurred for all three complexes but slow intermolecular exchange on the coupling constant time scale was evidenced through detection of J HgH interactions for Hg ( L ) 2 2 + . These unusual observations are discussed in the context of the zinc triad metal ion coordination chemistry of related bis-tridentate chelates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.