Abstract
Alkaline phosphatases (ALPs) are membrane bound metalloenzymes, distributed all over the body. Recent studies have revealed that by targeting ALPs can lead towards the treatment of many deadliest diseases including cardiac, cancerous and brain diseases. Thioureas and their derivatives are of considerable significance and are privileged scaffolds in medicinal chemistry. They show a wide range of pharmacological activities such as antibacterial, antiparasitic, anti-inflammatory and antioxidants etc. On the other hand, salicylic acid and its derivatives are known for its broad spectrum of activities. The work presented comprises of synthesis of N-acyl-N'-aryl substituted bisthioureas of pimelic acid (1–7) and 3,5-dimethyl pyrazole (11), 1-aroyl-3-aryl thiourea (12) and 1,3,4-oxadiazole (13) derivatives of 4-methyl salicylic acid. Structures of all the synthesized compounds were characterized by FT-IR and 1H NMR spectroscopic analysis. Synthesized compounds were evaluated for their alkaline phosphatases inhibition potential and exhibited high potency as well as selectivity towards h-TNAP and h-IAP. Compound 7 and 12 which were the bisthiourea derivative of pimmelic acid and thiourea derivative of 4-methyl salicylic acid, respectively, showed excellent selectivity against h-TNAP and h-IAP, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.