Abstract

This paper presents a hybrid iterative algorithm of analytic Kirchhoff Approximation (KA) and numerical method of moment (MoM) for scattering computation from a three-dimensional (3D) perfect conducting target above a randomly rough surface. The coupling integral equations (IEs) are derived based on the Green’s function and the boundary conditions. The MoM with the Conjugate Gradient (CG) approach is used to solve the target’s IE, and the KA is applied to scattering from the rough surface. The coupling iteration takes account the interactions between the target and the underlying rough surface. Convergence of the hybrid KA-MoM algorithm is numerically validated. Since is only one numerical integral of induced current on the target performed by KA computation, much memory and computation time is reduced. Bistatic scattering from a PEC cubic or spheroid target above a Gaussian rough surface are numerically simulated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.