Abstract

We investigate the signal-to-noise ratio (SNR) for a bistatic coherent laser radar (CLR) system. With a bistatic configuration, the spatial resolution is determined by the overlap of the transmit beam and the virtual backpropagated local oscillator beam. This eliminates the trade-off between range resolution and the bandwidth of the transmitted pulse inherent in monostatic systems. The presented analysis is completely general in that the expressions can be applied to both monostatic and bistatic CLR systems. The heterodyne SNR is computed under the assumption of untruncated Gaussian optics and untruncated Gaussian beam profiles. The analysis also includes the effects of refractive turbulence. The results show that, for maximum SNR, small transmit and local oscillator beam profiles (e-1 intensity radius) are desired.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.