Abstract

We show that a positive feedback loop between sodium current inactivation and wave-front ramp-up speed causes a saddle-node bifurcation to result in bistable planar and spiral waves in electrically excitable media, in which both slow and fast waves are triggered by different stimulation protocols. Moreover, the two types of spiral wave conduction may interact to give rise to more complex spiral wave dynamics. The transitions between different spiral wave behaviors via saddle-node bifurcation can be a candidate mechanism for transitions widely seen in cardiac arrhythmias and neural diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.