Abstract

This letter presents a bistable permanent magnet actuator, based on double wing magnetic flux (DWMF) formed by the structure of welding sleeve and slotted armature. The double wing magnetic flux consist of high wing magnetic flux (HWMF) and low wing magnetic flux (LWMF), resulting in bistable performance under differentiating control. Parameters improvement around DWMF is analyzed based on modeling, and optimized results for a prototype actuator are obtained. The experimental and simulation results agree well, and show that the prototype actuator can realize bistable performance under the DC step voltage drive, with the holding force of 8.2 N (without current) and the restoring force of −31.7 N (with negative current), the dynamic results show that the displacement response time within 8 mm is 28 ms, of which the actuation time is 16.5 ms, the transient maximum power consumption of the restoring period is 18 W.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.