Abstract

Bistability of MAP kinase (MAPK) activity has been suggested to contribute to several cellular processes, including differentiation and long-term synaptic potentiation. A recent model (Markevich NI, Hoek JB, Kholodenko BN. J Cell Biol 164: 353-359, 2004) predicts bistability due to interactions of the kinases and phosphatases in the MAPK pathway, without feedback from MAPK to earlier reactions. Using this model and enzyme concentrations appropriate for neurons, we simulated bistable MAPK activity, but bistability was present only within a relatively narrow range of activity of Raf, the first pathway kinase. Stochastic fluctuations in molecule numbers eliminated bistability for small molecule numbers, such as are expected in the volume of a dendritic spine. However, positive-feedback loops have been posited from MAPK up to Raf activation. One proposed loop in which MAPK directly activates Raf was incorporated into the model. We found that such feedback greatly enhanced the robustness of both stable states of MAPK activity to stochastic fluctuations and to parameter variations. Bistability was robust for molecule numbers plausible for a dendritic spine volume. The upper state of MAPK activity was resistant to inhibition of MEK activation for >1 h, which suggests that inhibitor experiments have not sufficed to rule out a role for persistent MAPK activity in the maintenance of long-term potentiation (LTP). These simulations suggest that persistent MAPK activity and consequent upregulation of translation may contribute to LTP maintenance and to long-term memory. Experiments using a fluorescent MAPK substrate may further test this hypothesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.