Abstract
Scanning tunneling microscopy (STM) and density functional theory (DFT) were used to study the tautomerization reaction of an H2Pc molecule adsorbed on a Ag(100) surface. The presence of two hydrogen atoms in the cavity of the H2Pc molecule enforces the existence of two molecular tautomers. It causes a reduction from 4- to 2-fold symmetry in STM images that can be recorded as two current states over the H2Pc molecule with a high-to-low current state ratio of ∼1.2. These findings are confirmed by the spatial distributions of the all-atom electron charge density calculated by using DFT and transmission maps together with tunneling current ratios (∼1.2) determined from the nonequilibrium Green’s function transport calculations. Therefore, we demonstrate that an H2Pc molecule adsorbed on a Ag(100) surface is a good candidate for a bistable molecular conductance switch since neither the presence of the Ag(100) surface nor that of the STM tip alters the tautomerization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.