Abstract
Active spectral tuning of nanophotonic devices offers many fascinating prospects for the realization of novel optical function. Here, switchable spectral response is enabled by the architecture of one-dimensional (1D) photonic crystal (PC) integrated with phase change material of the germanium antimony telluride (GST). Active and precise tuning of the bistable passband and central resonant frequency is demonstrated in the 1D PC composed of alternate SiN and GST nanofilms. An analytical model is derived to specify the tunable spectral features, including the band gap and resonant frequencies. Both the measured and calculated results show distinct red shifts of passband and the resonant minima (or maxima), well confirming theoretical predictions. This work demonstrates a route to construct active photonic devices with the electrically or thermally tunable spectra via 1D PC and potentially extends diverse applications based on the PC platform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.