Abstract

The bistability of self-modulation of the spectrum of the stimulated picosecond radiation that appears during picosecond optical pumping of GaAs is detected. The radiation is measured before it reaches the end faces of a sample. One set of equidistant modes occurs in the radiation spectrum at the radiation pulse front. A set of modes located at the center between the initial modes replaces the first set in the descending radiation branch. The intermode interval inside each set coincides with the calculated interval between the eigenmodes of the GaAs layer, which is an active cavity. The radiation rise time turns out to be an oscillating function of the photon energy. The spectrum evolution is self-consistent so that the time-integrated spectrum and the spectrum-integrated radiation pulse envelope have a smooth (without local singularities) shape. The revealed bistability explains the physical nature of the two radiation-induced states of population depletion between which subterahertz self-oscillations in the radiation field were detected earlier. The radiation spectrum self-modulation is assumed to be a variant of stimulated Raman scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.